
Produire des sons, écouter

- Chap. 1 Les ondes stationnaires
- Chap. 2 Produire un son par un instrument de musique
- Chap. 3 Acoustique musicale et physiques des sons Livre p. 90 à 97

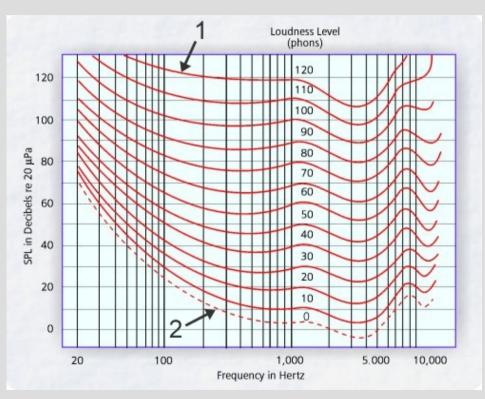
- 1. Analyse spectrale d'un son
- Un signal périodique (donc un son) peut-être décomposé en une somme d'ondes sinusoïdales : le fondamentale et les harmoniques. C'est la décomposition en série de Fourier.
- Chaque sinusoïde possède une fréquence et une amplitude que l'on peut présenter sur un graphique nommé le <u>spectre du signal</u>.

1. Analyse spectrale d'un son

2. La hauteur d'un son

- La hauteur d'un son désigne la sensation « grave » ou « aigue » d'un son.
- La hauteur du son est donnée par la fréquence du fondamentale fo
- L'oreille est sensible aux fréquences s'étendant de 20Hz (très grave) à 20 kHz (très aigu).

3. L'intensité d'un son


- L'intensité d'un son définit sa « force ». Elle est liée à l'amplitude.
- L'intensité sonore est la puissance de l'onde par unité de surface

$$I = \frac{P}{S}$$

I en W/m²; P en W et S en m²

3. L'intensité d'un son

 La sensation auditive de l'intensité sonore va dépendre de l'oreille. Cette sensation dépend de la fréquence du son et va varier avec l'âge du sujet.

1 : seuil de douleur ; 2 : seuil d'audition

3. L'intensité d'un son

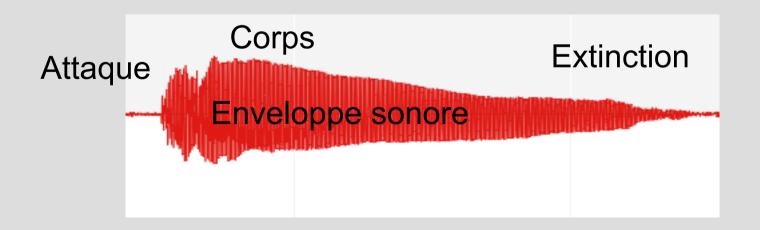
- Un son deux fois plus intense ne produit pas une sensation deux fois plus forte à l'oreille.
- C'est pourquoi la sensation auditive s'accorde mieux à une échelle logarithmique de l'intensité.

- 3. L'intensité d'un son
- On définit le niveau sonore L (Level) comme :

$$L = 10 \log \frac{I}{I_0}$$

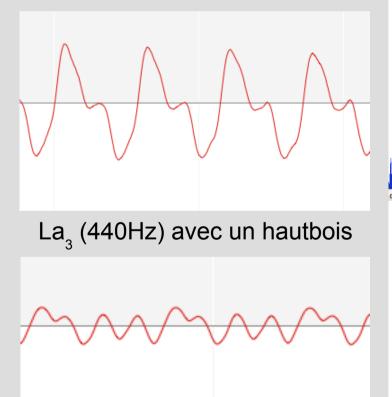
• Où I_0 est l'intensité de référence correspondant au seuil audible de l'oreille à 1000Hz

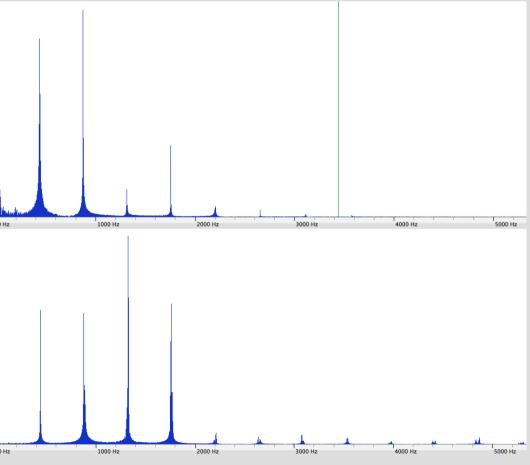
$$I_0 = 10^{-12} \text{W.m}^{-2}$$


L s'exprime en décibels (dB)

- 3. L'intensité d'un son
- Si l'intensité double : soit $I_2 = 2I_1$ Exprimez L_2 en fonction de L_1

- Si l'intensité double, le niveau sonore augmente de 3 dB
- Si l'intensité est divisée par deux, le niveau sonore baisse de 3dB.


- 4. Le timbre d'un instrument de musique
 - Deux instruments jouant la même note (la même hauteur) n'auront pas le même timbre.
 - Le timbre caractérise l'instrument de musique.
 - Le spectre permet de distinguer les caractéristiques d'un timbre.


- 4. Le timbre d'un instrument de musique
 - Le timbre dépend encore d'autres caractéristiques telles que l'attaque et l'extinction.

4. Timbre d'un instrument de musique

La₃ (440Hz) sur un piano

5. L'octave

- L'octave représente un intervalle de fréquences.
- Mathématiquement, les fréquences des sons situés à chaque extrémité d'une octave valent le double l'une de l'autre*
- Exemple le domaine de fréquence entre le La₂
 (220 Hz) et La₃ (440 Hz) représente un octave.

6. La gamme tempérée

- La gamme représente le découpage de l'octave afin de définir des notes.
- Pour la gamme tempérée imaginée par Jean-Sébastien Bach, l'octave est découpé en 12 intervalles égaux.
- Comme l'octave n'est pas un intervalle de fréquence constant (il double à chaque

6. La gamme tempérée

 Pour passer du Do médium au Ré :

$$261,63\times2^{\frac{2}{12}}=293,66\,Hz$$

 Pour passer du La 440 au Ré :

$$440,00\times2^{\frac{-7}{12}}=293,66\,Hz$$

 Le diapason est la note de référence pour calculer toutes les autres. Il s'agit du La₃ = 440 Hz

Note	Facteur / Do	Facteur / La	Fréquence (Hz)
Do	$2^{\frac{0}{12}}=1$	$2^{\frac{-9}{12}}$	261,63
Do#	$2^{\frac{1}{12}}$	$2^{\frac{-8}{12}}$	277,18
Ré	$2^{\frac{2}{12}}$	$2^{\frac{-7}{12}}$	293,66
Mib	$2^{\frac{3}{12}}$	$2^{\frac{-6}{12}}$	311,13
Mi	$2^{\frac{4}{12}}$	$2^{\frac{-5}{12}}$	329,63
Fa	$2^{\frac{5}{12}}$	$2^{\frac{-4}{12}}$	349,23
Fa#	$2^{\frac{6}{12}}$	$2^{\frac{-3}{12}}$	369,99
Sol	$2^{\frac{7}{12}}$	$2^{\frac{-2}{12}}$	392,00
Sol#	$2^{\frac{8}{12}}$	$2^{\frac{-1}{12}}$	415,30
La	$2^{\frac{9}{12}}$	1	440,00
Sib	$2^{\frac{10}{12}}$	$2^{\frac{2}{12}}$	466,16
Si	$2^{\frac{11}{12}}$	$2^{\frac{3}{12}}$	493,88
Do	$2^{\frac{12}{12}} = 2$	$2^{\frac{4}{12}}$	523,25

Exercices8, 10 et 12 page 103

Livre TermS spécialité, édition Nathan, collection Sirius, programme 2002