
TP - force et mouvement

Etude du pendule pesant

Observation : l'observation du pendule pesant laisse supposer l'influence de plusieurs paramètres sur la durée de la période T du balancement.

Ces paramètres sont :

- 1. La masse m;
- 2. l'écart initial x_0 de balancement (ou l'angle initial α_0);
- 3. la longueur l.

Objectif du TP : vérifier l'influence des ces trois paramètres sur la durée de la période T.

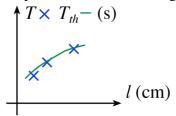
Définition: pesant

C'est le poids (pesant) de masse *m* qui est à l'origine du mouvement.

Mesures : chronométrer 10 périodes pour les situations suivantes.

Ecart (cm)	10T(s)				m(g)	10T(s)	
5 10			l = 50 c masse la		alu acier		$l = 50 \text{ cm}$ $m_{\text{alu}} =$
15					laiton		$m_{\text{acier}} = m_{\text{laiton}} =$
20 25					50 100		m _{laiton} =
Ecart (cm)	l(cm)	1	0T(s)				
5	10			mass	e laiton		
5	20						
10	30						
10	40						
20	50						
20	60 L						

Claude Divoux, mai 2004


Exploitation:

- 1. La période dépend-elle de la masse ? de l'écart initial ? de la longueur ?
- 2. Compléter le tableau

5 10	masse laiton
5 20	laiton
10 30	
10 40	
20 50	

| 20 | 60 | | | | | | | | avec T_{th} (période théorique) $T_{th} = 2\pi \sqrt{\frac{l}{g}}$; g = 9.81 m.s⁻².

3. Représenter sur le même graphique T et T_{th} en fonction de la longueur l.

Conclusion:

la formule théorique vérifie les relevés expérimentaux.

La période du pendule ne dépend que de sa longueur et de la gravité terrestre.

Sur la Lune, le même pendule aurait une autre période.